Climate change and the air

The air is all round us and is a mixture of many different gases. 78% of the air is made of nitrogen, which  is the most common gas. This story is about two other gases found in the air – oxygen and carbon dioxide.

 

 

We breathe out carbon dioxide
We breathe out carbon dioxide

We breathe in oxygen and use it to release energy from sugar. At the same time we make carbon dioxide – all living organisms do the same. We all  do this to stay alive.

People  also make carbon dioxide when we burn fuels, such as coal, oil, petrol and wood.

Nailsea was once a very small village

If we go back over three hundred years to the 1700’s, Nailsea was a a tiny village surrounded by farms. Few people lived there, then. People burned wood or peat (from the moors) to stay warm.  They walked everywhere or travelled horse and cart.

 

Carbon dioxide in the air is measured in units called ‘parts per million’. Scientists  have estimated that in the early 1700’s the carbon dioxide in the air was about 280 parts per million.

An artist’s reconstruction of Middle Engine Pit, Nailsea. Artwork by Mark Hornby. From https://www.nailseatown.com/heritage-trail/middle-engine-pit/

However, things were beginning to change in Nailsea: the first coalmine was opened in 1700 and this would transform the village into a town in the next ninety years. The mines employed experienced miners who came to live in the town as well as local farmworkers.

 

Nailsea Glassworks
Nailsea glassworks

Plenty of cheap coal led to the opening of the glass factory and more migration of people into the town.  The arrival of the railway in 1841 provided new opportunities to trade with Bristol and its ports. The steam trains were powerful and burned coal.

In Nailsea, new houses were built together with  new roads and shops. Trendlewood quarry was opened in 1850 to provide sandstone tiles for the roofs of the new houses.

 

All of this activity added carbon dioxide to the air in increasing amounts.  Trees can take carbon dioxide out of the air, but the local woods were gradually chopped down to make way for the new town and for farmland. The wood was burned as fuel.

This pattern of industrialisation has taken place everywhere, all over the world since then. It continues to do so, too. In 2024, the amount of carbon dioxide in the air is estimated at 423 parts per million. This is a rise of 51% since the 1700s.

Does all of this matter? Most scientists think it matters a lot, but some politicians want to disagree.

greenhouse effect

Carbon dioxide in the air acts like a blanket, reflecting heat energy back towards the land and the sea. In this way, it acts like glass in a greenhouse. The warming caused by the increased carbon dioxide is sometimes called “the greenhouse effect”.

 

 

Increased levels of carbon dioxide in the air affects the climate and weather patterns across the world, as we shall see in the next story.

 

Notes on the story

Climate change and the weather

Climate change and the weather

Most scientists think that the Earth is getting warmer and that human activities are making it worse. This story looks at some of the evidence they use.

Weather super computer
A weather super computer at National Oceanic and Atmospheric Administration (https://www.noaa.gov/)

Weather experts collect millions of temperature measurements from all around the world every day. They put these results into powerful computers that build a picture of the climate across the world every day. Their results suggest that 2024 was the hottest year ever recorded.

 

BBC graph of global temperatures since 1940
Global average temperatures for 2024 were around 1.6C above those of the pre-industrial period – the time before humans started burning large amounts of fossil fuels

The temperature of the Earth in 2024 is about 1.5°C higher than it was in 1880, before large factories, cars, and airplanes existed. The yearly temperatures since 2020 include three of the hottest years since we started recording temperatures.

 

 

 

 

A 1.5°C rise in temperature does not sound like much, but it is having a big effect on the weather around the world.

hurricane Helene devastated towns in Florida, US, in 2024The temperature of the water in the seas in 2024 was the hottest ever. This causes the wind speeds to increase in tropical storms, causing huge damage when they hit coastal towns.

 

 

Flooding in Backwell Bow, 2024
Flooding in Backwell Bow, 2024

Warm air can hold more water than colder air, so rainstorms can be more powerful and last longer. Flooding in low-lying areas becomes more common.

The level of the sea in 2024 is about 111mm higher than it was in 1993. This increases the risk of flooding in coastal areas.

 

 

Nyangai Island off the coast of Sierra Leone
Nyangai Island off the coast of Sierra Leone is being lost to the sea

Some small islands in the ocean are at risk of disappearing due to the rising sea waters. Nyangai Island off the coast of Sierra Leone has almost been lost to the waves.

 

 

 

polar bear on Arctic ice floe
An adult polar bear that came near to the Arctic Sunrise, wandering around the ship for sometime.

The rising sea levels are being made worse by the melting of the ice in the Arctic and Antarctic. Summer ice in the Arctic is disappearing by about 12% every ten years. It is affecting the survival of polar bears.

 

 

 

Notes on the story

Climate change and new arrivals

Climate change and the leavers

Rams horn gall oak wasp
The ram’s horn gall oak wasp was first found in Berkshire in 1997. It is now quite common in the Park [Picture – Andrew Town].
We can spot new arrivals in Nowhere Wood, if we have time and patience. Anyone can do this if they walk through the wood often, thinking about what they see. It is much harder to notice species that disappear because the changing climate does not suit them. Species come and go from the wood all of the time.

 

So how do we know which species have left permanently because of climate change?

News article about declining number of insects
This news article from the Natural History Museum is about declining number of insects. From: https://www.nhm.ac.uk/

One way is to combine our observations of Nowhere Wood with observations from other woods across the country. This helps us to see the ‘bigger picture’.

When we do this, we can see that we do have a problem: London’s Natural History Museum reports that “UK’s flying insects have declined by 60% in 20 years”.

 

Three reasons are given for this fall in numbers,  rising temperatures caused by climate change,  loss of suitable habitats and the use of harmful chemicals as pesticides.

The hairy-footed flower bee, pollinating a lungwort flower
The hairy-footed flower bee, pollinating a lungwort flower [Picture – Andrew Town].
Losing insects could have serious effects on Nowhere Wood and the surrounding farmlands. Bees are insects that are suffering this fall in numbers. They help to pollinate many crops, including the apple trees in the orchards.

 

 

Many insects are food for birds and other animals. A loss of insects could lead to a reduction in the number of these animal, too.

  1. Bee hotels are sometimes used as a way to help encourage solitary bees to breed and survive. Learn how to do this here.
  2. Imagine what a world would look like without insects.  Does it matter if we lose our insects?

 

 

Notes on the story

Being and becoming in Nowhere Wood

Apples and the new year

Let’s travel back in time three hundred years or more, to the East End Farm, near the hamlet of Nowhere. 

East End farm has a few sheep and goats, some vegetables and several apple orchards.

 

 

 

c
The orchards contain a number of apple trees

Tonight the orchards are surrounded by farm workers and villagers from Nowhere, all singing and banging pots and pans. Children hang pieces of toast soaked in cider from the tree branches. 

For tonight, January 5th, is the wassail, the twelfth night of Christmas.

 

 

 

Small orchards in Somerset
The orchards contain a number of apple trees

Apples grow all across the county of Somerset, and are especially important to Nowhere and its bigger neighbour, Nailsea. Every farm brews cider, which they give to the farm hands as part of their wages. 

 

 

(Centuries later, cider would be brewed and sold in large factories. Nailsea hosted  Coates factory for over 150 years. These days, the Thatcher family brews cider at Sandford, ten miles to the southwest.)  

Wassailing at night
Wassailing at night, with burning torches

Back in Nowhere, apple trees are a sign of a healthy farm. Wise famers celebrate the good health of their orchards with a wassail.

Their people visit the apple trees by the light of burning torches.  Singing songs to them and making a lot of noise to ward off evil spirits. Hopefully, this should be enough to ensure a good harvest in the next year. 

The oldest tree in the orchard is given the greatest respect, and he is called the ‘Apple Tree Man’.

 The Apple Tree Man decides how many apples will grow in the next year. Farmers keep the Apple tree Man happy by pouring cider over his roots. 

There are several old folk tales told in Somerset about the Apple Tree Man. The next story is a modern retelling of one of these old tales.

 

 

Notes on the story

The Apple Tree Man of Nowhere

The sustainable park

The old willow tree in Trendlewood parkThis willow tree in the park is very old. Maybe a hundred years or so. Look how its bark is gnarled and twisted. It is a great friend of the park and is home to many different insects and birds. One year, a female mallard duck even made a nest on the flat top of the tree!

The willow keeps on growing because every few years, it’s friends cut off all of its branches!

This really does encourage the tree to grow strongly. 

We call the removal of the branches ‘pollarding’.

This ancient willow tree has recently been pruned
Pollarding trees is a way of keeping them alive

This week, it was the old willow’s turn to be pollarded. You can see the cut stumps where the branches used to be.

Woods have always been important to people. In the 17th century, new forests were planted to provide enough timber for the boats for the Royal Navy.

People have pollarded woodland trees for thousands of years.  It was their main source of wood for building, making furniture, for charcoal and for fuel to heat their homes.

 

Wood is a very useful sustainable resource, when managed in this way. It is sustainable because the tree carries on growing and making new wood.

Pollarded willow wood is special. It is used to make cricket bats and weave baskets.  For generations, this provided income for poor families  in Somerset.

It is also a good way of making new fences. This is because cut branches of willow will grow new roots when they are placed in water.

The cut stems will grow into new trees and can become a hedge when they are planted closely together.

Two volunteers from the Friends of Trendlewood Park soaking the branches of willow

The photograph shows two volunteers from the Friends of Trendlewood Park preparing willow branches to build into a new hedge in the area near the playing fields.

They place the cut ends of the branches into water.

A newly planted willow hedge in Tendlewood Park

In a few months’ time, when the weather is warmer, this hedge should be growing strongly and could grow for many years.

 

 

 

 

  1. This species of willow is called the brittle willow, because branches break off easily. Suggest why it is an advantage to the willow for these branches to be able to grow into new trees.
  2. This species of willow has two ways of reproducing. It flowers and makes seed and also can propagate through fallen branches. Find out why it is useful for the species to be able to reproduce in these two ways.

After the story:

Just after I finished writing this story, it was announced that young trees grown from seeds of the Sycamore Gap tree are to be given to charities, groups and individuals as “trees of hope“. This ancient sycamore tree, from Northumberland, was cut down in September 2023.

new growth from there Sycamore gap tree
Image from https://www.thesill.org.uk/sycamore-gap-tree-is-sprouting/

This is a lovely, kind idea. The tree lives on, not only through its seeds, but  also in the new stems that are growing from its cut stem. This shows the power of nature to recover and re-grow. Life is resilient, it does not give up.

 

 

Notes on the story

Apples and the New Year

The fairy ring

Fairy ring fungus
Fairy ring fungus [photograph: Andrew Town]
Just outside of Nowhere Wood, next to the school playing fields, you can, on a summer evening, sometimes see a fairy ring. The photograph shows parts of this fairy ring: sometimes you can find rings that form a perfect circle.

 

How many fungi can you see here? There are about 15 mushrooms – the fruiting bodies, but only one fungus. In the soil, the fungus exists as a tangle of small thin threads called hyphae. The hyphae, which make up bodies of all fungi,  are called mycelia.

Fungal mycelia can grow to enormous sizes. There is a fungus in a forest in Oregon, USA, which is 3.5 miles across and covers over 2000 acres. It could be up to 8.5 thousand years old!

The grass growing around a fairy ring fungus
The grass growing around a fairy ring fungus [photograph: Andrew Town]
The fungus is good at feeding on dead organisms, and returning the nutrients to the soil. This helps the grass growing around the circle to grow taller than the grass growing further away from the fungus.

 

 

Fairies dancing in a fairy ring
Fairies dancing in a fairy ring [image Brian Froud]
People love fairy rings and make up stories about them. In English folklore, fairy rings are caused by fairies dancing in a circle. Be careful if you see one though. The stories say that if people join in the dance they would be punished by the fairies, and made to dance in the ring until they fall asleep. 

 

  1. Why do you think that fungi are useful in our woods and fields?
  2. William Shakespeare is thought to have written these lines:
“If you see a fairy ring
In a field of grass,
Very lightly step around,
Tiptoe as you pass;
Last night fairies frolicked there,
And they’re sleeping somewhere near.
If you see a tiny fay
Lying fast asleep,
Shut your eyes”

 

William Shakespeare wrote “A Midsummer’s Night’s Dream” in about 1596.  In the play a group of powerful fairies cast spells on people, making their lives very difficult. Many people believed in such ideas in Elizabethan times.
Why do you think many people no longer think like this?

Hard hats, safety specs and camouflage jackets

What’s in a name?

Dryads Saddle
Dryad’s saddle [photograph: Andrew Town]
This fungus grows in Nowhere Wood. It has the glorious scientific name of Polyporus squamous. That’s hard to say, harder to spell and even harder to remember!!

Scientific names are important though: they give the accurate name of the organism, and they also tell scientists quite a lot about how the organism lives. These scientific names are a kind of code that give the name and address of the organism in the living world.

However, the names that ordinary people give organisms are just as important. They are easy to remember and often tell an interesting story.  This fungus above is called the Dryad’s saddle. If you look carefully, you can see that it shaped a bit like a saddle that someone would use when riding a horse.

Is this what a dryads looks like?
Is this what a dryad looks like? [An AI generated image]
Dryads are nymphs that live in the world of myths and legends. They live inside trees, often oaks.

Oak trees can live for a 1 000 years, and the dryads are the spirits of the woods, protecting and nurturing the trees. They are the guardians of the woodlands. They are invisible, unless they choose to reveal themselves to us.

Perhaps you will see a dryad in Nowhere Wood? You will have to be quiet and be thinking the right kinds of thoughts.

 

 

Dryads observe the changes in the seasons, the rhythms of nature and their deep connection to the Earth. Perhaps we need to think the same way if we are to be allowed to see them for ourselves.

Scarlet elf cup
Scarlet elf cup [photograph: Andrew Town
There are lots of fungi with interesting fairy names. This is the scarlet elf cup and grows in Nowhere Wood, feeding on fallen sycamore and hazel wood.

 

 

 

  1. Find out what the scientific name is for our human species. What do the words mean in English? Do you think they are a good description of us?
  2. Very few people believe that there are dryads protecting our woods. Can you think of any benefits to thinking like this? Are there any disadvantages?

The fairy ring

 

If a tree falls….

A fallen ash tree in nowhere Wood
A fallen ash tree in Nowhere Wood

It was a stormy August night in Nowhere Wood. The wind was tearing through the leaves and branches and was strong enough to pull the whole tree down.

And so, a tree that had been growing in the Wood for fifty years or more was felled to the floor of the wood.

 

 

 

Ash dieback disease
Leaves damaged by ash dieback disease

In the tangled wreckage of leaves, twigs and branches, we can see the tell-tale signs of Ash-dieback disease. This probably weakened the tree, so the wind could blow it over more easily.

 

 

Most of the ash trees in this region have the disease, which is caused by a fungus that produces sores that blow away in the air, spreading easily through the wood.

Fungi feeding in a fallen tree in Nowhere Wood
The tree is a store of nutrients

Although the tree has died, its adventure through time continues. It is becoming useful because it is a large store of nutrients that other organisms in the wood will  use to survive and grow.

Over time,  insects and fungi will break down the tree wood  releasing nutrients that to the organisms in the wood.

Left undisturbed, nothing will go to waste.

 

a fungus on a tree
Mushrooms are the fruiting bodies of some fungi

 

There are lots of fallen trees in Nowhere Wood. The autumn is a good time to see  fungi feeding on the wood, because this is the season when they produce their fruiting bodies that make spores. Mushrooms are examples of these fruiting bodies.

 

 

 

 

  1. There is an old saying that says: “If a tree falls in a forest and no one is around to hear it, does it make a sound?” It helps us to think why observations are important for our understanding of the world. How do we know that the ideas in this story are true? 

What’s in a name? 

What is a frog?

Frog spawn in Nowhere WoodIt is late February, the cold weather has moved away and the frogs have moved back in. It’s been a couple of years since they were last here, but here are their newly-laid eggs and the female is hiding beneath the leaf in the top left corner of the photograph. What is a frog and how is it having adventures in Nowhere Wood?

Frogs are amphibians, animals with backbones that live for most of the year on land, but which have to return to water to breed. A female with eggs is popular with males, which compete with each other to get close to her.

When she releases here eggs into the water, the males release their sperm onto the eggs. Fertilisation takes place in the water. The female lays about 2 000 eggs and many of them die. The brown eggs in the top photograph are probably a clutch of eggs that have died.

 

 

 

Inside the egg, the embryo is growing into a juvenile tadpole, feeding on the jelly that surrounds it. It will grow a tail and gills and become a free swimming tadpole. Soon, the tadpole will break free and have to make its way as an independent animal, all of the while developing into the adult frog.

There are dangers in the water: tadpoles become carnivores and will eat each other and there are other predators, too. There is also a real chance that the water in the pond will disappear if we have a prolonged dry spell.

The frogs in Nowhere Wood are having adventures, moving forward into an unknown future, with no certainty of success. Most of these eggs will be eaten and will become food for other organisms; one or two might survive. Most years, frogs return to the water to breed, as frogs everywhere have done for the last 265 million years.

1. The survival of the frogs is not just due to chance. There is competition between male frogs to get close to the females eggs. How does this help to increase the success of the mating?

2. There is also competition between tadpoles for food. How does this help ensure that some frogs will survive to become adults that can reproduce for themselves?

3. What, do you think, is a frog?

Frog news update:

One week on, and the spawn has floated to the edge of the pond and the adds are swollen because they have taken up water. They still look healthy. Fingers crossed for the next stage!

 

 

Early risers!

Spring is coming!

the shortest dayNowhere Wood on December 23rd was silent and still. The wood was in midwinter, at its furthest point from the Sun on its journey through the seasons. At only 7 hours and 49 minutes, this was the shortest day  and darkness ruled the wood. From now onwards the days will get longer by about two minutes each day until midsummer’s day in July.

new born squirrelsThe air was was misty and damp. No birds sang. The only movements were from ten or more baby squirrels running up and down trees, looking for food. The plentiful acorns in the autumn gave their parents the nutrients the needed to produce a special autumn litter.

 

Even by January, the wood had moved onwards and the days were drawing out. Robins sang from high branches of trees, marking out the wood into their territories, preparing for the coming spring.

 

 

Jackdaws and magpies fought for the right to control the high airspaces and the food that the neighbouring houses throw away. The wood was bustling with movement and sound.

 

 

Today is February 1st, the day that the Celtic peoples call Imbolc, the first day of spring. The flowers are opening and the frogs will soon return to our ponds to breed. Look upwards to the sky.

Spring is coming!

  1. Think about the acorns that filled the floor of Nowhere Wood in September. How have they led to the birth of the new squirrels?
  2. What changes have you seen in your neighbourhood in the last few weeks since January?

What is a frog?

Subterranean superheroes

The leaves covering the floor of Nowhere Wood are slowly disappearing in the mild December nights. Fog hangs in the air. The wood is preparing for winter and everywhere is quiet and still. Most of the real action is taking place below the ground, but what is making the leaves disappear?

 

The culprits are earthworms, the little subterranean superheroes that do most of the heavy lifting in Nowhere Wood. There is about 45 million earthworms underground in the wood, with a total biomass equal to about twenty elephants. They are easily the most abundant animal in the wood, but they are so rarely seen.

 

Earthworms tunnel into the soil making the burrows that are their homes. At night, they come to the surface to drag fallen leaves back down into their burrows. The burrows are also perfect homes for bacteria and fungi.

 

 

The bacteria and fungi  feed on the leaves, turning them into nutrients that they use as food. This is humus. Earthworms eat the fungi and the humus-rich soil. As they do so, they glue the soil particles together into small clumps. This improves the quality of the soil, making it a perfect environment for plant roots.

 

Plant roots need plenty water, air and nutrients, all of which are given to the soil by the fungi and earthworms. We can think of earthworms as the soil’s farmers, ploughing the soil for the plants. Without their work, no life could exist in Nowhere Wood.

 

The famous scientist Charles Darwin studied how plants, earthworms and fungi work together to keep woods alive, and he wrote a famous book about it in 1881. He wrote about earthworms: “It may be doubted whether there are many other animals which have played so important a part in the history of the world, as have these lowly organised creatures.”

  1. In what ways do you think that soil is alive?
  2. Think about how the trees, fungi and earthworms work together to keep the wood alive.

Today, Friday 4th December 2020, is World Soil Day 2020. Here is a video celebrating our dependence on soil:

Spring is coming!

A year in the life of a sugar factory

The leaves of plants are everywhere in Nowhere Wood, helping to keep the wood alive. Leaves are organs: collections of living tissues and cells, having adventures in time and space. This is the story of a year in the life of an oak leaf.

Leaves are factories for making sugar from sunlight, water and carbon dioxide from the air. No human factory can do this, which is why we, and all other organisms, are so dependent on plants. Leaves are the producers of food.

In is late November and the cells that will divide to make the new leaf are protected safely inside the scales of the bud. Early in March, when the days warm and get longer, stem cells within the bud start to divide many times, producing all of the cells of the new leaf. To start with, the cells are very small and all look the same.

Soon, the cells take up water and get much larger. They escape the protection of the bud and the new leaf emerges. The new cells no longer look the same: they are on different journeys of development, becoming all of the different cells and tissues that make up the leaf.

 

The leaf is a factory for making sugar. Like any factory, it has a source of energy and transport systems to get the raw materials into the factory.  It also moves the manufactured sugar out to the places in the plant where it is needed. The heart of the factory is the production line where sugar is made. These are called chloroplasts and the leaf has millions of them, all making sugar whenever the sun shines. The Spring and Summer are sugar making seasons.

Gradually, in the autumn, when the days get cooler and shorter, the sugar factories are shut down and abandoned. The chloroplasts lie in ruins as everything useful is recycled back into the branches of the tree. All that remain are the frameworks of cell walls, turning brown as they dry in the autumn air.

 

Finally, the oak tree makes a special layer of cells that separates the old leaf from the stem, and the leaf is ready to fall when the wind blows strongly. The fallen leaves are not wasted, becoming energy stores for the organisms that feed on them. Next year’s buds are forming and wait for spring and the production of new leaves.

If leaves are factories form making sugar, then trees are factories for making leaves.

Everything has its own season in Nowhere Wood.

  1. Think about how the leaf is a factory for making sugar. Where does its energy store come from? How do the raw materials get to the production line?
  2. The production of leaves is sustainable in Nowhere Wood. What do you think this sentence means?

Subterranean superheroes

All change!

When you next look into a mirror ask yourself if you are the same person as you were yesterday. Well, of course you are.

Even people who last met you ten years ago can still recognise you and call you by your name. Although they might add, “My, how you have grown!”

And yet, if we could see under your skin, we would find that you are not the same. One of the biggest mysteries in biology is how we can change all of the time, whilst still staying the same.

Your skin cells live for about two weeks, so every month they are completely replaced. Red blood cells live for about 100 days and about two million are made in your body in every second.

Some of the chemicals in your cells exist for only minutes or seconds.

There is an energy store called ATP, which is needed for muscle contraction. ATP is made and broken down within 15 seconds.  Cells need glucose to make ATP and this explains why muscle cells need a continuous supply of glucose to stay alive. This comes from our food.

Even large organs, like the liver, are replaced regularly. You grow a new liver every year. The cells in the alveoli of your lungs are renewed every eight days. Even the bone cells in our skeleton are replaced every three months. Your entire skeleton is remade every ten years.

 

So, when your friend sees you after ten years and calls out your name, there is not a single part of your body that was the same as when you last met. You have been completely remade and remodelled. And the same is true of your friend.

 

So, how can this be? New cells are made when one cell divides to make two cells. The information in the genome is copied before cells divide, so the new cells always receive the same information as the old cells.

The new cells use this information to grow bigger and to develop. So, you stay the same because of how your new cells use the information in their genomes.

Living organisms are alive because they actively remake themselves. No man-made machine can do this. Which is, perhaps, just as well.

  1. In what ways have you changed in the last ten years?
  2. In what ways have you stayed the same?
  3. Why do need to eat food everyday?

A year in the life of a sugar factory

Climbing the walls

A hundred years ago, Nowhere Wood was a sandstone quarry, and there is still a cliff face at the end of the wood.
How can this hart’s tongue fern grow on a vertical cliff face about two metres from the ground.

That is quite an adventure in time and space. This story explains how this fern can climb walls.


Ferns are an ancient group of plants, first appearing on Earth about 390 million years ago. That’s about 260 million years before the emergence of flowering plants.

Like fungi, another ancient group, ferns produce spores. They are the brown dots on the underside of this fern leaf. Spores are light and float in the air like particles of dust.

One spore floats up to a small crack in the rock face. Rainwater and the decaying remains of a leaf have formed a sticky, jam-like, humus inside the crack.  The spore sticks to the humus and germinates, developing into a tiny little plant, about 10 mm long.

This is a fern, but it is not the mature adult form. It has tiny roots that grow into the humus, drawing nutrients from it.
This small plant is called a gametophyte because it makes gametes for sexual reproduction. Gametes are sperm and egg cells. 


These gametes will come together to make the adult fern on the surface of the tiny gametophyte.

The gametophyte makes many small sperm that swim in the water on the surface of the plant. They swim towards eggs, which are much larger. This photograph shows a fern sperm fertilising a fern egg.

The sperm and the egg join together. A single cell is produced that will grow into the adult fern. Eventually this fern will make spores of its own.

This may sound like a long-winded and complicated adventure, but it seems to work well, because there are so many ferns in Nowhere Wood.

The fern exists in several different forms during its adventure: spores, eggs, sperm, gametophyte and adult plants. What do they have in common?

Each of these forms is made of one or many cells. Each cell contains a nucleus, and inside each nucleus is a genome. Genomes contain information. The information in the genome is the same in all of the different forms of the fern.

The genome contains the secrets of how to be a fern and how to move forward in the next step of the adventure.

  1. The fern exist in several different forms during its adventure: spores, eggs, sperm, gametophyte and adult plants. Think why is important that the genome in every form is the same? 

Life is a relay race

Moving things on

The weather is warm and wet in Nowhere Wood.

These are perfect conditions for growing the fungi that spread  everywhere throughout the soil of Nowhere Wood. Fungi are Nature’s recyclers, feeding on the fallen leaves, fruits and wood.

Fungi feed on the wood of the dead oak trees, turning it into nutrients that provide energy and chemicals needed  to grow new fungal cells.  (These cells form long threads called hyphae). Some fungi can spread out over really large areas, several kilometres wide.

At this time of the year, the fungi are busy ‘ being’.

Then one night, silently and without warning, the fungi do something else.

They produce structures that we call “mushrooms” **.

Mushrooms are  fruiting bodies. They produce thousands of tiny spores.

Spores are small and light. They are carried on air currents to new places in Nowhere Wood, where they will germinate and grow into new hyphae.

Spores have often been found in the filters of jet aircraft flying at the edge of the atmosphere, so some spores can travel right round the world. When fungi produce spores they are ‘becoming’ something new: small, light and mobile versions of themselves.

Then, almost as soon as they arrive, it is all over. The fruiting bodies die and become food for other fungi and bacteria in Nowhere Wood.

This is how it is. The precious molecules are used, recycled and become part of the growth of new organisms. Nothing is ever wasted.



 

  1. Nearly all of the atoms present on Earth when life began to evolve about 3.7 billion years ago are still found on Earth today. Many of them are found locked inside living organisms. Sooner or later, all of these organisms will die. Imagine what life would be like without Nature’s recyclers.
  2. You are a collection of recycled atoms. Think about how carbon atoms enter and leave your body. [Hint, carbon atoms are found in carbohydrates and in carbon dioxide.]

You can read more about ‘being and becoming’ here.

 

**Some mushrooms are good to eat, others are really poisonous and can kill us. It is hard to tell them apart unless you are an expert, so it is sensible not to touch or eat any mushrooms you find in a wood.

Climbing the walls