Hard hats, safety specs and camouflage jackets

It is a January morning, misty and still. The air hangs silently in Nowhere Wood. Suddenly close,  but just out of sight, a loud and fast drumming shakes the stillness. Then a silent pause, followed by a quieter drumming coming from the other end of the wood.

Let’s find the first drummer. He’s hard to see, high up in the tree, but there he is, pressed against the tree trunk: a male great spotted woodpecker. The other drummer in the distance is a young female. The woodpeckers are having an adventure in Nowhere Wood.

A female great spotted woodpecker approaching her young in Nowhere Wood.
A female great spotted woodpecker approaching her young in Nowhere Wood. [Photograph: Andrew Town]

Our male is digging a hole in his tree, hoping to impress the female. If it works, she will lay their eggs in the hollow space in the tree. This photograph, taken a few weeks later in Nowhere Wood,  shows the new mother feeding her fledgling chick.

How can these woodpeckers drill such large holes in trees without injuring themselves? Well, it looks as if all parts of their bodies have special characteristics that enable the birds to do this. Scientists call these special characteristics, adaptations.

Look at this video of a great spotted woodpecker pecking at a tree. Look at his  feet. He has three toes on each foot, with two toes facing forwards to grip and hold onto the tree trunk. This prevents him falling off when he pecks the tree! The beak is made of a tough material that keeps growing and keeps the beak sharp.

The adaptations to the skull and tongue of the woodpecker
The adaptations to the skull and tongue of the woodpecker

His skull is especially strengthened, like a builder’s hard hat. The brain presses right up against it and cannot move around.

The tongue extends backwards into the head as a long thin tube of bone and cartilage that runs right round the inside of the skull of the woodpecker. This acts like a seat belt, holding the brain in place.

The tongue is especially long and sticky, so it can go right into the tree holes, searching for insects.

Close up of the woodpecker
a close up of a woodpecker

The eyes fit tightly inside the skull, and do not vibrate whilst the bird is pecking. Their eyes have a special transparent membrane that closes across the front of the eye to prevent splinters of wood scratching the eyes. The feathers around the eyes and beak also stop wood reaching the eyes. Together, they act as safety spectacles!

Finally, a woodpecker is quite vulnerable to attack by larger birds when it is drumming against the tree. The patterns of lines and stripes act  like a camouflage jacket, making the bird hard to see against the tree surface.

  1. Woodpeckers have a lot of adaptations to help them to survive in Nowhere Wood. This story contains a photograph that suggests that the woodpeckers are living successfully here. What does the photograph tells us about the future of woodpeckers in Nowhere Wood?
  2. Woodpeckers have developed these adaptations through evolution.  Charles Darwin is the scientist who first suggested a possible way evolution could happen. This is called natural selection. Find out what natural selection is.

Notes on the story

A different kind of woodpecker

Safety in numbers

cluster fliesThese animals look like cars parked in the autumn sunshine. They look harmless enough, but they have some gruesome secrets.

What are they and what are they doing? They are called cluster flies, and they are warming their bodies in the sun, before flying to feed on the fruits of the wood.

They are having adventures in time and space in Nowhere Wood.  Life in the wood is dangerous and the animals are busy being alive: feeding, drinking and staying warm.

The animals certainly look like flies: with one pair of wings, a large head and huge compound eyes. Look closer and you might see their mouthparts, sucking water from the surface of the leaf.

cluster flies
cluster flies on leaf in Nowhere Wood, October 2021

The flies have lived their whole lives in Nowhere Wood. Their mothers laid their eggs in the soil last autumn. In the Spring, the eggs hatched to release larvae into the soil that burrowed into the bodies of earthworms.

They spent the early summer feeding on the worms before pupating. The adults emerged in the early summer, killing their earthworm hosts.

 

 

The flies are in a hurry to breed before it goes colder, later in the month. They are becoming mature enough to produce the next generation of flies.

Then the cycle of ‘being and becoming’ will begin again.

There is safety in numbers. The main predator of these flies is a type of wasp. There are twenty pairs of eyes looking out for danger and when one senses the wasps, they all fly away.

Life is so uncertain in Nowhere Wood. As well as wasps, the air contains the spores of dangerous fungi, that can infect and grow inside the adults,  eating them up from the inside! In spite of the dangers, enough cluster flies survive to breed to be present in the wood next year.

Life is an uncertain adventure for the cluster flies, the earthworms, the wasps and the fungi. Everything is connected in Nowhere Wood.

  1. Suggest why cluster flies need to warm their bodies in the morning, before they can fly.
  2. Suggest why there is safety in numbers.

Goodbye, for now

Early risers!

Every year, the snowdrop is the first plant to flower in Nowhere Wood. It is a symbol of the birth of Spring, bringing good cheer and hope at the end of a long winter. This is one reason why people plant snowdrops in their gardens.

Snowdrops are tougher than they look: they can grow through ice and snow. Their leaves have hardened edges that act as snowploughs and their cells contain a snowdrop antifreeze that stops ice crystals forming. The real secret of the snowdrop’s success is found below the ground, in the frozen soil. There, in the darkness, is a bulb, full of food made in last Spring’s photosynthesis. Like a battery, it is an energy store, so that the plant can start to grow in the weak winter sunshine.

This means that the plant can make leaves to grow in the warming Sun. The leaves make food to store in its bulbs ready for next year. Snowdrops do all of this before the leaves of the big trees open to steal the light, so that the floor of the wood becomes shaded. By then, the work of the snowdrop is over and it can wait for the next winter.

1. How have people helped the snowdrop to survive for so many years?

2. What advantages do snowdrops have by storing their food in underground bulbs. Can you think of any possible disadvantages?

Snowdrops have many more secrets that help them in their adventures in time and in space. We may tell more stories about snowdrops in the coming days! Come back to read them.

Time travellers to Nowhere (1)

A year in the life of a sugar factory

The leaves of plants are everywhere in Nowhere Wood, helping to keep the wood alive. Leaves are organs: collections of living tissues and cells, having adventures in time and space. This is the story of a year in the life of an oak leaf.

Leaves are factories for making sugar from sunlight, water and carbon dioxide from the air. No human factory can do this, which is why we, and all other organisms, are so dependent on plants. Leaves are the producers of food.

In is late November and the cells that will divide to make the new leaf are protected safely inside the scales of the bud. Early in March, when the days warm and get longer, stem cells within the bud start to divide many times, producing all of the cells of the new leaf. To start with, the cells are very small and all look the same.

Soon, the cells take up water and get much larger. They escape the protection of the bud and the new leaf emerges. The new cells no longer look the same: they are on different journeys of development, becoming all of the different cells and tissues that make up the leaf.

 

The leaf is a factory for making sugar. Like any factory, it has a source of energy and transport systems to get the raw materials into the factory.  It also moves the manufactured sugar out to the places in the plant where it is needed. The heart of the factory is the production line where sugar is made. These are called chloroplasts and the leaf has millions of them, all making sugar whenever the sun shines. The Spring and Summer are sugar making seasons.

Gradually, in the autumn, when the days get cooler and shorter, the sugar factories are shut down and abandoned. The chloroplasts lie in ruins as everything useful is recycled back into the branches of the tree. All that remain are the frameworks of cell walls, turning brown as they dry in the autumn air.

 

Finally, the oak tree makes a special layer of cells that separates the old leaf from the stem, and the leaf is ready to fall when the wind blows strongly. The fallen leaves are not wasted, becoming energy stores for the organisms that feed on them. Next year’s buds are forming and wait for spring and the production of new leaves.

If leaves are factories form making sugar, then trees are factories for making leaves.

Everything has its own season in Nowhere Wood.

  1. Think about how the leaf is a factory for making sugar. Where does its energy store come from? How do the raw materials get to the production line?
  2. The production of leaves is sustainable in Nowhere Wood. What do you think this sentence means?

Subterranean superheroes

All change!

When you next look into a mirror ask yourself if you are the same person as you were yesterday. Well, of course you are.

Even people who last met you ten years ago can still recognise you and call you by your name. Although they might add, “My, how you have grown!”

And yet, if we could see under your skin, we would find that you are not the same. One of the biggest mysteries in biology is how we can change all of the time, whilst still staying the same.

Your skin cells live for about two weeks, so every month they are completely replaced. Red blood cells live for about 100 days and about two million are made in your body in every second.

Some of the chemicals in your cells exist for only minutes or seconds.

There is an energy store called ATP, which is needed for muscle contraction. ATP is made and broken down within 15 seconds.  Cells need glucose to make ATP and this explains why muscle cells need a continuous supply of glucose to stay alive. This comes from our food.

Even large organs, like the liver, are replaced regularly. You grow a new liver every year. The cells in the alveoli of your lungs are renewed every eight days. Even the bone cells in our skeleton are replaced every three months. Your entire skeleton is remade every ten years.

 

So, when your friend sees you after ten years and calls out your name, there is not a single part of your body that was the same as when you last met. You have been completely remade and remodelled. And the same is true of your friend.

 

So, how can this be? New cells are made when one cell divides to make two cells. The information in the genome is copied before cells divide, so the new cells always receive the same information as the old cells.

The new cells use this information to grow bigger and to develop. So, you stay the same because of how your new cells use the information in their genomes.

Living organisms are alive because they actively remake themselves. No man-made machine can do this. Which is, perhaps, just as well.

  1. In what ways have you changed in the last ten years?
  2. In what ways have you stayed the same?
  3. Why do need to eat food everyday?

A year in the life of a sugar factory

Organise and stay alive

Living organisms have very organised structures.

Everything depends upon the way that the different parts of their bodies work together.

The parts of this watch work together, so that the hands of the watch move round in a rhythm that we use to tell the time. The hands do this because of the precise organisation of all of the parts of the watch.

The ability to tell the time emerges from the watch, only when all of the parts move together smoothly. If anything goes wrong, the watch “stops” and the ability to tell the time disappears.

Living organisms are alive because they are organised. Everything depends upon the way that the different parts of their bodies work together.

For an organism, life emerges and exists for only as long as its parts work together smoothly.

If anything goes wrong, the organism becomes ill. If it is very serious, then the organism dies and its life disappears. This is difficult to think about, but it is a fact of life.

  1. One of the important features of human society is that we have learned how to care for the sick and the elderly. Hows does this help the survival of humanity?

Moving things on